A Decade of UAV Docking Stations: A Brief Overview of Mobile and Fixed Landing Platforms

Author:

Grlj Carlo GiorgioORCID,Krznar Nino,Pranjić Marko

Abstract

Unmanned Aerial Vehicles have advanced rapidly in the last two decades with the advances in microelectromechanical systems (MEMS) technology. It is crucial, however, to design better power supply technologies. In the last decade, lithium polymer and lithium-ion batteries have mainly been used to power multirotor UAVs. Even though batteries have been improved and are constantly being improved, they provide fairly low energy density, which limits multirotors’ UAV flight endurance. This problem is addressed and is being partially solved by using docking stations which provide an aircraft to land safely, charge (or change) the batteries and to take-off as well as being safely stored. This paper focuses on the work carried out in the last decade. Different docking stations are presented with a focus on their movement abilities. Rapid advances in computer vision systems gave birth to precise landing systems. These algorithms are the main reason that docking stations became a viable solution. The authors concluded that the docking station solution to short ranges is a viable option, and numerous extensive studies have been carried out that offer different solutions, but only some types, mainly fixed stations with storage systems, have been implemented and are being used today. This can be seen from the commercially available list of docking stations at the end of this paper. Nevertheless, it is important to be aware of the technologies being developed and implemented, which can offer solutions to a vast number of different problems.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing UAV Crew Performance and Safety: A Technology and Innovation Management Perspective;Sosyal Mucit Academic Review;2024-07-30

2. Collision-Free Landing of Multiple UAVs on Moving Ground Vehicles Using Time-Varying Control Barrier Functions;2024 American Control Conference (ACC);2024-07-10

3. An advanced cooperative multi-hive drone swarm system for global dynamic multi-source information awareness;Journal of Industrial Information Integration;2024-07

4. AeroBridge: Autonomous Drone Handoff System for Emergency Battery Service;Proceedings of the 30th Annual International Conference on Mobile Computing and Networking;2024-05-29

5. Concept for Sharing Drone Data in Agricultural Data Ecosystem;2024 47th MIPRO ICT and Electronics Convention (MIPRO);2024-05-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3