Abstract
A team of non-holonomic constant-speed under-actuated unmanned aerial vehicles (UAVs) with lower-limited turning radii travel in 3D. The space hosts an unknown and unpredictably varying scalar environmental field. A space direction is given; this direction and the coordinate along it are conditionally termed as the “vertical” and “altitude”, respectively. All UAVs should arrive at the moving and deforming isosurface where the field assumes a given value. They also should evenly distribute themselves over a pre-specified range of the “altitudes” and repeatedly encircle the entirety of the isosurface while remaining on it, each at its own altitude. Every UAV measures only the field intensity at the current location and both the Euclidean and altitudinal distances to the objects (including the top and bottom of the altitudinal range) within a finite range of visibility and has access to its own speed and the vertical direction. The UAVs carry no communication facilities, are anonymous to one another, and cannot play distinct roles in the team. A distributed control law is presented that solves this mission under minimal and partly inevitable assumptions. This law is justified by a mathematically rigorous global convergence result; computer simulation tests confirm its performance.
Funder
Ministry of Science and Higher Education of the Russian Federation
Subject
Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering
Reference56 articles.
1. Cooperative forest fire surveillance using a team of small unmanned air vehicles
2. Determining environmental boundaries: Asynchronous communication and physical scales;Bertozzi,2004
3. Mobile robotic sensors for perimeter detection and tracking
4. Monitoring of Harmful Algal Blooms;Pettersson,2012
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献