Multispectral Fluorescence Imaging Technique for On-Line Inspection of Fecal Residues on Poultry Carcasses

Author:

Seo Youngwook,Lee HoonsooORCID,Mo Changyeun,Kim Moon S.,Baek InsuckORCID,Lee Jayoung,Cho Byoung-KwanORCID

Abstract

Rapid and reliable inspection of food is essential to ensure food safety, particularly in mass production and processing environments. Many studies have focused on spectral imaging for poultry inspection; however, no research has explored the use of multispectral fluorescence imaging (MFI) for on-line poultry inspection. In this study, the feasibility of MFI for on-line detection of fecal matter from the ceca, colon, duodenum, and small intestine of poultry carcasses was investigated for the first time. A multispectral line-scan fluorescence imaging system was integrated with a commercial poultry conveying system, and the images of chicken carcasses with fecal contaminants were scanned at processing line speeds of one, three, and five birds per second. To develop an optimal detection and classification algorithm to distinguish upper and lower feces-contaminated parts from skin, the principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA) were first performed using the spectral data of the selected regions, and then applied in spatial domain to visualize the feces-contaminated area based on binary images. Our results demonstrated that for the spectral data analysis, both the PCA and PLS-DA can distinguish the high and low feces-contaminated area from normal skin; however, the PCA analysis based on selected band ratio images (F630 nm/F600 nm) exhibited better visualization and discrimination of feces-contaminated area, compared with the PLS-DA-based developed chemical images. A color image analysis using histogram equalization, sharpening, median filter, and threshold value (1) demonstrated 78% accuracy. Thus, the MFI system can be developed utilizing the two band ratios for on-line implementation for the effective detection of fecal contamination on chicken carcasses.

Funder

Rural Development Administration

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3