A WRKY Transcription Factor CbWRKY27 Negatively Regulates Salt Tolerance in Catalpa bungei

Author:

Gu Jiaojiao12,Lv Fenni2,Gao Lulu2,Jiang Shengji2,Wang Qing2,Li Sumei2,Yang Rutong2,Li Ya2,Li Shaofeng3,Wang Peng12ORCID

Affiliation:

1. College of Forestry, Nanjing Forestry University, Nanjing 210037, China

2. Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province & Chinese Academy of Sciences, Nanjing 210014, China

3. State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing 100091, China

Abstract

Catalpa bungei is an economically important tree with high-quality wood, which is highly ornamentally valuable in China. Salinity is one of the major constraints restricting the growth of the C. bungei. However, the molecular mechanism underlying the salt stress response remains unknown in C. bungei. In our previous study, a novel WRKY transcription factor gene CbWRKY27 was isolated using association mapping based on the transcriptome database of Catalpa Yuqiu1. In this study, CbWRKY27 was found to function as a transcriptional activator in the nucleus. The transcription of CbWRKY27 was inhibited under salt stress and reactive oxygen species (ROS) but was induced after abscisic acid (ABA) treatment. CbWRKY27-overexpression plants showed decreased tolerance to salt stress compared to wild type while enhancing sensitivity to ABA-regulated lateral root length. Quantitative real-time PCR (qPCR) studies showed that the transcript levels of the ABA biosynthesis gene (NCED3), signaling genes (ABI3 and ABI5), and responsive genes (RD29B and RD22) were greatly increased in CbWRKY27-overexpression plants under salt stress. Under salt treatment, CbWRKY27-overexpression plants disturbed ROS homeostasis by repressing antioxidant enzymes and enhancing the production of O2− and H2O2 through down-regulation of ROS-scavenging-related genes (APX, SOD, and PER57). In summary, these results indicate that CbWRKY27 negatively regulates salt tolerance in C. bungei.

Funder

Chinese Academy of Forestry-Special funds for basic scientific research service expenses of the central level public welfare research institutes

National Natural Science Foundation of China

Jiangsu Agricultural Science and Technology Innovation Fund

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3