Genomics-assisted prediction of salt and alkali tolerances and functional marker development in apple rootstocks

Author:

Liu Jing,Shen Fei,Xiao Yao,Fang Hongcheng,Qiu Changpeng,Li Wei,Wu Ting,Xu Xuefeng,Wang Yi,Zhang Xinzhong,Han Zhenhai

Abstract

Abstract Background Saline, alkaline, and saline-alkaline stress severely affect plant growth and development. The tolerance of plants to these stressors has long been important breeding objectives, especially for woody perennials like apple. The aims of this study were to identify quantitative trait loci (QTLs) and to develop genomics-assisted prediction models for salt, alkali, and salt-alkali tolerance in apple rootstock. Results A total of 3258 hybrids derived from the apple rootstock cultivars ‘Baleng Crab’ (Malus robusta Rehd., tolerant) × ‘M9’ (M. pumila Mill., sensitive) were used to identify 17, 13, and two QTLs for injury indices of salt, alkali, and salt–alkali stress via bulked segregant analysis. The genotype effects of single nucleotide polymorphism (SNP) markers designed on candidate genes in each QTL interval were estimated. The genomic predicted value of an individual hybrid was calculated by adding the sum of all marker genotype effects to the mean phenotype value of the population. The prediction accuracy was 0.6569, 0.6695, and 0.5834 for injury indices of salt, alkali, and salt–alkali stress, respectively. SNP182G on MdRGLG3, which changes a leucine to an arginine at the vWFA-domain, conferred tolerance to salt, alkali, and salt-alkali stress. SNP761A on MdKCAB, affecting the Kv_beta domain that cooperated with the linked allelic variation SNP11, contributed to salt, alkali, and salt–alkali tolerance in apple rootstock. Conclusions The genomics-assisted prediction models can potentially be used in breeding saline, alkaline, and saline-alkaline tolerant apple rootstocks. The QTLs and the functional markers may provide insight for future studies into the genetic variation of plant abiotic stress tolerance.

Funder

Modern Agricultural Industry Technology System

the Beijing Municipal Education Commission

Construction of Beijing Science and Technology innovation and Service Capacity in Top Subjects

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3