Transcriptional Profiling of BpWRKY49 Reveals Its Role as a Master Regulator in Stress Signaling Pathways in Birch (Betula platyphylla)

Author:

Abbas Sammar12,Jing Ruotong12,Abbas Manzar3ORCID,Hu Zijian12,Kalsoom Rabia12,Hussain Syed Sarfaraz1,Du Liang12ORCID,Lin Jinxing12,Zhang Xi12ORCID

Affiliation:

1. State Key Laboratory of Tree Genetics and Breeding, State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China

2. Institute of Tree and Genome Editing, Beijing Forestry University, Beijing 100083, China

3. Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot 011517, China

Abstract

The WRKY family of transcription factors (TFs) is one of the most diverse families in plants, playing crucial roles in various plant growth and stress response processes. Asian white birch (Betula platyphylla) is a globally distributed tree species that holds ecological, medical, and economic significance. However, the regulatory mechanisms of WRKY TFs in birch remain poorly understood. Herein, we cloned and characterized the BpWRKY49 gene from birch. Through bioinformatics analyses, we revealed the potential involvement of BpWRKY49 in both biotic and abiotic stress responses. In addition, BpWRKY49 was found to be localized in the nucleus and exhibited transcriptional activity in yeast. Transactivation assays further confirmed that BpWRKY49 exhibited transcriptional activity at its C-terminal end. Notably, our binding specificity assays demonstrated the specific interaction of BpWRKY49 with the W-box cis element in vitro. Furthermore, tissue-specific expression analysis demonstrated that BpWRKY49 exhibited the highest expression level in the roots. Real-time quantitative PCR (RT-qPCR) analysis of birch plants subjected to salt and drought treatments revealed that BpWRKY49 displayed significant 30-fold and 10-fold upregulations under salt and drought stress conditions, respectively. DAP-seq analysis of BpWRKY49 identified a total of 21,832 peaks, with 3477 occurring in the promoter region of genes. Gene ontology (GO) enrichment analysis highlighted prominent terms related to defense against biotic stress, followed by terms associated with abiotic stress and development. Y1H assays of three genes provided evidence for the binding ability of BpWRKY49 to the promoters of BpPUB21, BpBTL15, and BpHIP47 in vitro. Collectively, our findings strongly suggest that BpWRKY49 possesses diverse functions and may activate multiple genes to contribute to various biological processes, including salt stress tolerance, in birch.

Funder

Beijing Municipal Natural Science Foundation

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

STI 2030-Major Projects

Program of Introducing Talents of Discipline to Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3