Wavelet Packet Transform Modulus-Based Feature Detection of Stochastic Power Quality Disturbance Signals

Author:

Choe SanghoORCID,Yoo Jeonghwa

Abstract

Wavelet transform modulus (WTM) has been used to detect or localize transient signal discontinuities. A numerical analysis indicated that these power quality disturbance (PQD) events are extremely sensitive to the random phase offset due to shift-variant wavelet or wavelet packet characteristics, which have not been comprehensively discussed yet. In this paper, we define wavelet packet transform modulus (WPTM) and present a WPTM-based PQD feature detection that is robust to severe power signal channels including random phase offset and low signal-to-noise ratio (≤25 dB). The presented WPTM-based detection that exhibits an exponentially increased degrees of freedom (DoF) and has better correlation properties than existing WTM-based detection of a limited DoF (two or three). We then use a standard median filter to efficiently remove impulsive noise and add a threshold modification step to reduce the false edge detection rate under random phase offset conditions while maintaining a reasonable detection rate. The proposed scheme uses the majority voting-based indirect correlation or root-mean-square metric between wavelet packet coefficients, rather than the conventional wavelet denoising or correlation metric. For a reliable numerical analysis, the proposed scheme uses both double- and single-edge-based detection measures, and the results verify its superiority over the conventional wavelet-based, wavelet-correlation-based, or non-wavelet-based schemes.

Funder

National Research Foundation of Korea

Catholic University of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference29 articles.

1. Denoising Techniques With a Spatial Noise-Suppression Method for Wavelet-Based Power Quality Monitoring

2. A Wavelet Tour of Signal Processing the Sparse Way;Mallat,2008

3. A new S-transform-based method for identification of power quality disturbances;Ali;Arab. J. Sci. Eng.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3