Power Quality Disturbance Recognition Using Empirical Wavelet Transform and Feature Selection

Author:

Chen Sihan,Li Ziche,Pan GuobingORCID,Xu Fang

Abstract

With the growth of nonlinear electrical equipment, power quality disturbances (PQDs) often appear in electrical systems. To solve this, a practical heuristic methodology for PQD detection and classification based on empirical wavelet transform has been proposed. By using a multiresolution analysis tool, empirical wavelet transform, the voltage waveform signal is decomposed into several sub-signals, and some potential features are extracted in the statistical method. To reduce the feature vector dimensions, the ReliefF algorithm is used for feature selection and optimized for dimensionality reduction, which reduces the complexity of system calculation while ensuring accuracy. Finally, a classifier based on support vector machines (SVM) was built, and with the ranked feature vectors’ input, the PQD can be recognized. The experimental results verify that the classification results achieved high accuracy, which confirms the properties and robustness of the proposed approach in noisy environments.

Funder

National Basic Research Program of China

Zhejiang Province Key Research and Development Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hybrid binarized neural network for high-accuracy classification of power quality disturbances;Electrical Engineering;2024-08-07

2. High-accuracy classification of power quality disturbances using hybrid binary neural network;2024 IEEE 10th International Power Electronics and Motion Control Conference (IPEMC2024-ECCE Asia);2024-05-17

3. Performance Evaluation of Discrete Wavelet Transform and Machine Learning Based Techniques for Classifying Power Quality Disturbances;IEEE Access;2024

4. A new method for recognition and classification of power quality disturbances based on IAST and RF;Electric Power Systems Research;2024-01

5. Power Quality Disturbance Feature Extraction And Recognition;2023 5th International Conference on Electrical, Control and Instrumentation Engineering (ICECIE);2023-12-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3