Affiliation:
1. School of Civil Engineering College, Northeast Forestry University, Harbin 150000, China
2. Heilongjiang Provincial Highway Survey and Design Institute, Harbin 150000, China
Abstract
Considering that it is easily disturbed by various engineering factors such as weather, hydrology, and construction during engineering monitoring, the collected subsidence data contain various noises. In order to reduce the influence of engineering noise on the accuracy of subsidence prediction, it is proposed to use the Daubechies (DB) wavelet to decompose the original subsidence time series; the items with the low-frequency trend, after decomposition, are predicted using long short-term memory (LSTM) model, items with high-frequency noise used the autoregressive (AR) time series model to make predictions, and the prediction results of the low-frequency trend term and the high-frequency noise term are summed to obtain the total time series predicted value. Combining the actual engineering subsidence monitoring data of the old goaf, compared with the prediction results of the LSTM and RNN models without DB wavelet decomposition and the gray model GM (1,1), the results show that the DB wavelet has an obvious improvement effect in reducing the influence of measurement data noise on prediction error. Compared with the single prediction model LSTM, RNN, and GM (1,1), the proposed prediction model has higher prediction accuracy, smaller error, and better trend. It can be used as a calculation method to improve the prediction accuracy of surface subsidence in old goaf.
Funder
Science and Technology Project of the Department of Transportation of Heilongjiang Province
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献