The Interaction of Anthracycline Based Quinone-Chelators with Model Lipid Membranes: 1H NMR and MD Study

Author:

Selyutina Olga Yu.ORCID,Mastova Anna V.ORCID,Polyakov Nikolay E.ORCID

Abstract

Anthracycline antibiotics, e.g., doxorubicin, daunomycin, and other anthraquinones, are an important family of antitumor agents widely used in chemotherapy, which is currently the principal method for treating many malignancies. Thus, development of improved antitumor drugs with enhanced efficacy remains a high priority. Interaction of anthraquinone-based anticancer drugs with cell membranes attracts significant attention due to its importance in the eventual overcoming of multidrug resistance (MDR). The use of drugs able to accumulate in the cell membrane is one of the possible ways of overcoming MDR. In the present work, the aspects of interaction of anthraquinone 2-phenyl-4-(butylamino)naphtho[2,3-h]quinoline-7,12-dione) (Q1) with a model membrane were studied by means of NMR and molecular dynamics simulations. A fundamental shortcoming of anthracycline antibiotics is their high cardiotoxicity caused by reactive oxygen species (ROS). The important feature of Q1 is its ability to chelate transition metal ions responsible for ROS generation in vivo. In the present study, we have shown that Q1 and its chelating complexes penetrated into the lipid membrane and were located in the hydrophobic part of the bilayer near the bilayer surface. The chelate complex formation of Q1 with metal ions increased its penetration ability. In addition, it was found that the interaction of Q1 with lipid molecules could influence lipid mobility in the bilayer. The obtained results have an impact on the understanding of molecular mechanisms of Q1 biological activity.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3