Author:
Ahmed Yara,Elkhodary Khalil I.,Youssef Mostafa
Abstract
AbstractCardiotoxicity limits the use of anthracyclines as potent chemotherapeutics. We employ classical molecular dynamics to explore anthracycline interactions with a realistic myocardial membrane and compare to an ideal membrane widely used in literature. The interaction of these two membranes with four anthracyclines; doxorubicin, epirubicin, daunorubicin, and idarubicin are studied. Careful analysis was conducted on three forms of each drug; pristine, primary metabolite, and cationic salt. By examining the molecular residence time near the membrane’s surface, the average number of molecule/membrane hydrogen bonds, the immobilization of the molecules near the membrane, and the location of those molecules relative to the mid-plane of the membrane we found out that salt forms exhibit the highest cardiotoxic probability, followed by the metabolites and pristine forms. Additionally, all forms have more affinity to the upper layer of the realistic myocardial membrane. Meanwhile, an ideal membrane consisting of a single type of phospholipids is not capable of capturing the specific interactions of each drug form. These findings confirm that cardiotoxic mechanisms are membrane-layer and drug-form dependent.
Funder
The American University in Cairo, Bartlett Fund for Critical Challenges
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献