Recording Sodium Self-Inhibition of Epithelial Sodium Channels Using Automated Electrophysiology in Xenopus Oocytes

Author:

Lawong Rene Y.1,May Fabian1ORCID,Etang Etang C.1,Vorrat Philipp1,George Jonas1,Weder Julia1,Kockler Dagmar1,Preller Matthias1ORCID,Althaus Mike1

Affiliation:

1. Department of Natural Sciences, Institute for Functional Gene Analytics, Bonn-Rhein-Sieg University of Applied Sciences, 53359 Rheinbach, Germany

Abstract

The epithelial sodium channel (ENaC) is a key regulator of sodium homeostasis that contributes to blood pressure control. ENaC open probability is adjusted by extracellular sodium ions, a mechanism referred to as sodium self-inhibition (SSI). With a growing number of identified ENaC gene variants associated with hypertension, there is an increasing demand for medium- to high-throughput assays allowing the detection of alterations in ENaC activity and SSI. We evaluated a commercially available automated two-electrode voltage-clamp (TEVC) system that records transmembrane currents of ENaC-expressing Xenopus oocytes in 96-well microtiter plates. We employed guinea pig, human and Xenopus laevis ENaC orthologs that display specific magnitudes of SSI. While demonstrating some limitations over traditional TEVC systems with customized perfusion chambers, the automated TEVC system was able to detect the established SSI characteristics of the employed ENaC orthologs. We were able to confirm a reduced SSI in a gene variant, leading to C479R substitution in the human α-ENaC subunit that has been reported in Liddle syndrome. In conclusion, automated TEVC in Xenopus oocytes can detect SSI of ENaC orthologs and variants associated with hypertension. For precise mechanistic and kinetic analyses of SSI, optimization for faster solution exchange rates is recommended.

Funder

Ministry of Culture and Science of the State of North Rhine-Westphalia

Bonn-Rhein-Sieg University of Applied Sciences

German Research Foundation

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Reference35 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3