Dendritic cell epithelial sodium channel induced inflammation and salt-sensitive hypertension

Author:

Demirci Mert1,Hinton Antentor2,Kirabo Annet3456

Affiliation:

1. Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center

2. Department of Molecular Physiology and Biophysics, Vanderbilt University

3. Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center

4. Vanderbilt Center for Immunobiology

5. Vanderbilt Institute for Infection, Immunology and Inflammation

6. Vanderbilt Institute for Global Health, Nashville, Tennessee, USA

Abstract

Purpose of review Salt sensitivity of blood pressure (SSBP) is an independent risk factor for cardiovascular disease. Epithelial sodium channel (ENaC) plays a critical role in renal electrolyte and volume regulation and has been implicated in the pathogenesis of SSBP. This review describes recent advances regarding the role of ENaC-dependent inflammation in the development of SSBP. Recent findings We recently found that sodium enters dendritic cells via ENaC, a process regulated by serum/glucocorticoid-regulated kinase 1 and epoxyeicosatrienoic acid 14,15. Sodium entry activates NADPH oxidase, leading to the production of isolevuglandins (IsoLGs). IsoLGs adduct self-proteins to form neoantigens in dendritic cells that activate T cells and result in the release of cytokines promoting sodium retention, kidney damage, and endothelial dysfunction in SSBP. Additionally, we described a novel mechanistic pathway involving ENaC and IsoLG-dependent NLRP3 inflammasome activation. These findings hold promise for the development of novel diagnostic biomarkers and therapeutic options for SSBP. Summary The exact mechanisms underlying SSBP remain elusive. Recent advances in understanding the extrarenal role of ENaC have opened a new perspective, and further research efforts should focus on understanding the link between ENaC, inflammation, and SSBP.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Nephrology,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3