Human epithelial Na+ channel missense variants identified in the GenSalt study alter channel activity

Author:

Ray Evan C.1,Chen Jingxin1,Kelly Tanika N.2,He Jiang23,Hamm L. Lee3,Gu Dongfeng4,Shimmin Lawrence C.5,Hixson James E.5,Rao Dabeeru C.6,Sheng Shaohu1ORCID,Kleyman Thomas R.17

Affiliation:

1. Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania;

2. Department of Epidemiology, Tulane University, New Orleans, Louisiana;

3. Department of Medicine, Tulane University, New Orleans, Louisiana;

4. State Key Laboratory of Cardiovascular Disease, Division of Population Genetics, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China;

5. Human Genetics Center, University of Texas School of Public Health, Houston, Texas;

6. Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri

7. Departments of Cell Biology and Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania;

Abstract

Mutations in genes encoding subunits of the epithelial Na+ channel (ENaC) can cause early onset familial hypertension, demonstrating the importance of this channel in modulating blood pressure. It remains unclear whether other genetic variants resulting in subtler alterations of channel function result in hypertension or altered sensitivity of blood pressure to dietary salt. This study sought to identify functional human ENaC variants to examine how these variants alter channel activity and to explore whether these variants are associated with altered sensitivity of blood pressure to dietary salt. Six-hundred participants of the Genetic Epidemiology Network of Salt Sensitivity (GenSalt) study with salt-sensitive or salt-resistant blood pressure underwent sequencing of the genes encoding ENaC subunits. Functional effects of identified variants were examined in a Xenopus oocyte expression system. Variants that increased channel activity included three in the gene encoding the α-subunit (αS115N, αR476W, and αV481M), one in the β-subunit (βS635N), and one in the γ-subunit (γL438Q). One α-subunit variant (αA334T) and one γ-subunit variant (βD31N) decreased channel activity. Several α-subunit extracellular domain variants altered channel inhibition by extracellular Na+ (Na+ self-inhibition). One variant (αA334T) decreased and one (αV481M) increased cell surface expression. Association between these variants and salt sensitivity did not reach statistical significance. This study identifies novel functional human ENaC variants and demonstrates that some variants alter channel cell surface expression and/or Na+ self-inhibition.

Funder

HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)

HHS | NIH | National Heart, Lung, and Blood Institute (NHBLI)

American Heart Association (AHA)

Publisher

American Physiological Society

Subject

Physiology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3