Abstract
Numerous studies have shown that bovine hemoglobin, a protein from slaughterhouse waste, has important biological potential after conventional enzymatic hydrolysis. However, the active peptides could not be considered pure since they contained mineral salts. Therefore, an optimized multi-step process of electrodialysis with bipolar membranes (EDBM) was carried out to produce discolored and demineralized peptides without the addition of chemical agents. The aim of this study was to test the antibacterial, antifungal and antioxidant activities of discolored and demineralized bovine hemoglobin hydrolysates recovered by EDBM and to compare them with raw and discolored hydrolysates derived from conventional hydrolysis. The results demonstrate that discolored–demineralized hydrolysates recovered from EDBM had significant antimicrobial activity against many bacterial (gram-positive and gram-negative) and fungal (molds and yeast) strains. Concerning antibacterial activity, lower MIC values for hydrolysates were registered against Staphylococcus aureus, Kocuria rhizophila and Listeria monocytogenes. For antifungal activity, lower MIC values for hydrolysates were registered against Paecilomyces spp., Rhodotorula mucilaginosa and Mucor racemosus. Hemoglobin hydrolysates showed fungicidal mechanisms towards these fungal strains since the MFC/MIC ratio was ≤4. The hydrolysates also showed a potent antioxidant effect in four different antioxidant tests. Consequently, they can be considered promising natural, low-salt food preservatives. To the best of our knowledge, no previous studies have identified the biological properties of discolored and demineralized bovine hemoglobin hydrolysates.
Funder
The Natural Sciences and Engineering Research Council of Canada
Subject
Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology
Reference31 articles.
1. Microbial contamination and food degradation;Holban,2018
2. Microbiological Contamination: Risk Prevention in Infusion Therapyhttp://www.bbraun.lv/documents/microbiologicalcontamination.pdf
3. Microbial contaminants & contamination routes in food industry;Wirtanen,2007
4. Fungi and Food Spoilage;Pitt,2009
5. Effect of diet on cancer development: is oxidative DNA damage a biomarker?1,2 1This article is part of a series of reviews on “Oxidative DNA Damage and Repair.” The full list of papers may be found on the homepage of the journal. 2Guest Editor: Miral Dizdaroglu
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献