Radar/INS Integration and Map Matching for Land Vehicle Navigation in Urban Environments

Author:

Elkholy Mohamed12,Elsheikh Mohamed13ORCID,El-Sheimy Naser1

Affiliation:

1. Department of Geomatics Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada

2. Department of Transportation Engineering, Alexandria University, Alexandria 21544, Egypt

3. Electronics and Electrical Communication Engineering Department, Tanta University, Tanta 31512, Egypt

Abstract

Autonomous navigation requires multi-sensor fusion to achieve a high level of accuracy in different environments. Global navigation satellite system (GNSS) receivers are the main components in most navigation systems. However, GNSS signals are subject to blockage and multipath effects in challenging areas, e.g., tunnels, underground parking, and downtown or urban areas. Therefore, different sensors, such as inertial navigation systems (INSs) and radar, can be used to compensate for GNSS signal deterioration and to meet continuity requirements. In this paper, a novel algorithm was applied to improve land vehicle navigation in GNSS-challenging environments through radar/INS integration and map matching. Four radar units were utilized in this work. Two units were used to estimate the vehicle’s forward velocity, and the four units were used together to estimate the vehicle’s position. The integrated solution was estimated in two steps. First, the radar solution was fused with an INS through an extended Kalman filter (EKF). Second, map matching was used to correct the radar/INS integrated position using OpenStreetMap (OSM). The developed algorithm was evaluated using real data collected in Calgary’s urban area and downtown Toronto. The results show the efficiency of the proposed method, which had a horizontal position RMS error percentage of less than 1% of the distance traveled for three minutes of a simulated GNSS outage.

Funder

atural Sciences and Engineering Research Council of Canada’s CREATE-MSS Program

Canada Research Chairs program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3