A Fusion Strategy for Vehicle Positioning at Intersections Utilizing UWB and Onboard Sensors

Author:

Gao Huaikun1,Li Xu1,Song Xiang2ORCID

Affiliation:

1. School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China

2. School of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China

Abstract

For vehicle positioning applications in Intelligent Transportation Systems (ITS), lane-level or even more precise localization is desired in some typical urban scenarios. With the rapid development of wireless positioning technologies, ultrawide bandwidth (UWB) has stood out and become a prominent approach for high-precision positioning. However, in traffic scenarios, the UWB-based positioning method may deteriorate because of not-line-of-sight (NLOS) propagation, multipath effect and other external interference. To overcome these problems, in this paper, a fusion strategy utilizing UWB and onboard sensors is developed to achieve reliable and precise vehicle positioning. It is a two-step approach, which includes the preprocessing of UWB raw measurements and the global estimation of vehicle position. Firstly, an ARIMA–GARCH model to address the NLOS problem of UWB at vehicular traffic scenarios is developed, and then the NLOS of UWB can be detected and corrected efficiently. Further, an adaptive IMM algorithm is developed to realize global fusion. Compared with traditional IMM, the proposed AIMM is capable of adjusting the model probabilities to make them better matching for current driving conditions, then positioning accuracy can be improved. Finally, the method is validated through experiments. Field test results verify the effectiveness and feasibility of the proposed strategy.

Funder

National Key Research and Development Program of China

Program for Special Talents in Six Major Fields of Jiangsu Province

National Natural Science Foundation of China

National Science Foundation for Distinguished Young Scholars of China

Natural Science Foundation of the Jiangsu Higher Education Institutions of China

Future Network Scientific Research Fund Project

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3