Precursory Analysis of Water-Bearing Rock Fracture Based on The Proportion of Dissipated Energy

Author:

Hou Lixiao,Cao Kewang,Muhammad Khan Naseer,Jahed Armaghani DanialORCID,S. Alarifi SaadORCID,Hussain SajjadORCID,Ali MuhammadORCID

Abstract

In order to better understand the failure process of water-bearing rocks, samples of water-bearing sandstone were tested uniaxially. The failure process and the development of internal cracks were studied through the evolution characteristics of dissipated strain energy and particle flow simulation. In this study, we found that: (1) The presence of water in sandstone results in a reduction in energy storage capacity as well as strength. (2) The dissipated energy ratio curve of sandstone samples and simulated samples’ internal fracture development curve has obvious stages. The dissipated energy ratio turning point and the rapid fracture development point are defined as the failure precursor points of sandstone samples and simulated samples, respectively. In both sandstone samples and simulated samples, the ratio between failure precursor stress and peak strength remains almost unchanged under various water conditions. (3) The ratio of fracture to dissipated energy (RFDE) of sandstone is proposed, and interpreted as the increased number of cracks in the rock under the unit dissipated. On this basis, the fracture initiation dissipated energy (FIDE) of sandstone under different water cut conditions is determined, that is, the dissipation threshold corresponding to the start of the development of sandstone internal cracks. (4) The analysis shows that RFDE increases exponentially and FIDE decreases negatively with the scale-up in moisture content. Further, high moisture content sandstone consumes the same dissipative strain energy, which will lead to more fractures in its interior. The research in this paper can lay a theoretical and experimental foundation for monitoring and early warning of rock engineering disasters such as coal mining, tunnel excavation, slope sliding, and instability.

Funder

Anhui Provincial Scientific Research Preparation Plan Project

the Researchers Supporting Project

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3