Infrared Precursor Experiment to Predict Water Inrushes in Underground Spaces Using a Multiparameter Normalization

Author:

Cao Kewang12,Dong Furong12,Ma Liqiang2ORCID,Khan Naseer Muhammad3,Feroze Tariq3,S. Alarifi Saad4ORCID,Hussain Sajjad5ORCID,Ali Muhammad6ORCID

Affiliation:

1. School of Art, Anhui University of Finance and Economics, Bengbu 233030, China

2. School of Mines, China University of Mining and Technology, Xuzhou 221116, China

3. Department of Sustainable Advanced Geomechanical Engineering, Military College of Engineering, National University of Sciences and Technology, Risalpur 23200, Pakistan

4. Department of Geology and Geophysics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

5. Department of Mining Engineering, University of Engineering & Technology, Peshawar 25000, Pakistan

6. Australia Education Management Group, 635 Canterbury Road, Surrey Hills, VIC 3127, Australia

Abstract

Rock failure is the root cause of geological disasters such as slope failure, civil tunnel collapse, and water inrush in roadways and mines. Accurate and effective monitoring of the loaded rock failure process can provide reliable precursor information for water inrushes in underground engineering structures such as in mines, civil tunnels, and subways. The water inrush may affect the safe and efficient execution of these engineering structures. Therefore, it is essential to predict the water inrush effectively. In this paper, the water inrush process of the roadway was simulated by laboratory experiments. The multiparameters such as strain energy field and infrared radiation temperature field were normalized based on the normalization algorithm of linear function transformation. On the basis of analyzing the variation characteristics of the original parameters, the evolution characteristics after the parameters normalization algorithm were studied, and the precursor of roadway water inrush was predicted comprehensively. The results show that the dissipation energy ratio, the infrared radiation variation coefficient (IRVC), the average infrared radiation temperature (AIRT), and the variance of successful minor infrared image temperature (VSMIT) are all suitable for the prediction of roadway water inrushes in the developing face of an excavation. The intermediate mutation of the IRVC can be used as an early precursor of roadway water inrush in the face of an excavation that is being developed. The inflection of the dissipation energy ratio from a declining amount to a level value and the mutation of VSMIT during rock failure can be used as the middle precursor of roadway water inrush. The mutation of AIRT and VSMIT after rock failure can be used as the precursor of roadway imminent water inrush. Combining with the early precursor and middle precursor of roadway water inrush, the graded warning of “early precursor–middle precursor–final precursor” of roadway water inrush can be obtained. The research results provide a theoretical basis for water inrush monitoring and early warning in the sustainable development of mine, tunnel, shaft, and foundation pit excavations.

Funder

Anhui Provincial Scientific Research Preparation Plan Project

King Saud University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3