Analysis of Crack-Characteristic Stress and Energy Characteristics of Sandstone under Triaxial Unloading Confining Pressure

Author:

Duan Yanwei1ORCID,Zhang Guohua1,Qin Tao1

Affiliation:

1. Key Laboratory of Mining Engineering of Heilongjiang Province College, Heilongjiang University of Science and Technology, Harbin 150022, China

Abstract

The deformation and failure of underground engineering are usually caused by unloading. In this work, triaxial unloading confining pressure tests are carried out to simulate the failure process of rock mass caused by unloading, analyze the crack-characteristic stress, and study the energy evolution of rock under unloading and the pre-peak and post-peak energy characteristics combined with the energy theory. The results show that, when the confining pressure increases from 5 MPa to 20 MPa, crack closure stress σcc, crack initiation stress σci, dilatancy stress σcd, and peak stress σp are 6.34 times, 2.75 times, 1.93 times, and 1.66 times higher than the original, respectively. By comparing the increase in crack-characteristic stress, it can be found that the confining pressure has a large effect on the crack closure stress and crack initiation stress, while the dilatation stress and peak stress have relatively little influence. From the perspective of energy evolution, the pre-peak axial absorption energy U1 increases exponentially, the elastic energy Ue is similar to U1, and the circumferential consumption energy U3 and dissipation energy Ud are small. After reaching the peak stress, the growth rate of U1 decreases slightly, Ue decreases rapidly, and U3 increases rapidly but only as a small fraction of the total energy, while Ud grows almost exponentially and rapidly becomes the main part of the energy. Under each crack-characteristic stress state, the energy characteristic parameters gradually increase with the increase in confining pressure, which is manifested by the increase in slope in the linear fitting formula of energy characteristic parameters. The release process of the releasable elastic energy after the peak stress can be divided into three stages of “slow–fast–slow”, and the energy release process shows an obvious confining pressure effect.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference32 articles.

1. Variation of energy and criteria for strength failure of shale under triaxial cyclic loading;Li;Chin. J. Rock Mech. Eng.,2018

2. A new criterion of rock burst proneness based on the linear energy storage law and the residual elastic energy index;Gong;J. Rock Mech. Eng.,2018

3. Energy evolution and stress redistribution of high-stress rock mass under excavation distribution;Zou;Chin. J. Geotech. Eng.,2012

4. On energy analysis of rock failure;Xie;Chin. J. Rock Mech. Eng.,2005

5. Energy evolution mechanism and failure criteria of jointed surrounding rock under uniaxial compression;Li;J. Cent. South Univ.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3