Multi-Objective Energy Management Strategy Based on PSO Optimization for Power-Split Hybrid Electric Vehicles

Author:

Du Aimin,Chen YaoyiORCID,Zhang Dongxu,Han Yeyang

Abstract

The hybrid electric vehicle is equipped with an internal combustion engine and motor as the driving source, which can solve the problems of short driving range and slow charging of the electric vehicle. Making an effective energy management control strategy can reasonably distribute the output power of the engine and motor, improve engine efficiency, and reduce battery damage. To reduce vehicle energy consumption and excessive battery discharge at the same time, a multi-objective energy management strategy based on a particle swarm optimization algorithm is proposed. First, a simulation platform was built based on a compound power-split vehicle model. Then, the ECMS (Equivalent Consumption Minimization Strategy) was used to realize the real-time control of the model, and the penalty function was added to modify the objective function based on the current SOC (State of Charge) to maintain the SOC balance. Finally, the key parameters of ECMS were optimized by using a particle swarm optimization algorithm, and the effectiveness of the control strategy was verified under the WLTC (Worldwide Light-Duty Test Cycle) and the NEDC (New European Driving Cycle). The results show that under the WLTC test cycle, the overall fuel consumption of the whole vehicle was 6.88 L/100 km, which was 7.7% lower than that before optimization; under the NEDC test cycle, the fuel consumption of the whole vehicle was 5.88 L/100 km, which was 9.8% lower than that before optimization.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3