Machine Learning and Optimization in Energy Management Systems for Plug-In Hybrid Electric Vehicles: A Comprehensive Review

Author:

Recalde Angel1ORCID,Cajo Ricardo1ORCID,Velasquez Washington1ORCID,Alvarez-Alvarado Manuel S.1ORCID

Affiliation:

1. Faculty of Electrical and Computer Engineering, Escuela Superior Politecnica del Litoral, ESPOL, Campus Gustavo Galindo, Km. 30.5 Vía Perimetral, Guayaquil 090902, Ecuador

Abstract

This paper provides a comprehensive review of machine learning strategies and optimization formulations employed in energy management systems (EMS) tailored for plug-in hybrid electric vehicles (PHEVs). EMS stands as a pivotal component facilitating optimized power distribution, predictive and adaptive control strategies, component health monitoring, and energy harvesting, thereby enabling the maximal exploitation of resources through optimal operation. Recent advancements have introduced innovative solutions such as Model Predictive Control (MPC), machine learning-based techniques, real-time optimization algorithms, hybrid optimization approaches, and the integration of fuzzy logic with neural networks, significantly enhancing the efficiency and performance of EMS. Additionally, multi-objective optimization, stochastic and robust optimization methods, and emerging quantum computing approaches are pushing the boundaries of EMS capabilities. Remarkable advancements have been made in data-driven modeling, decision-making, and real-time adjustments, propelling machine learning and optimization to the forefront of enhanced control systems for vehicular applications. However, despite these strides, there remain unexplored research avenues and challenges awaiting investigation. This review synthesizes existing knowledge, identifies gaps, and underscores the importance of continued inquiry to address unanswered research questions, thereby propelling the field toward further advancements in PHEV EMS design and implementation.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3