Automated Prefabricated Slab Splitting Design Using a Multipopulation Coevolutionary Algorithm and BIM

Author:

Xu Chengran1,Zheng Xiaolei2,Wu Zhou2ORCID,Zhang Chao3

Affiliation:

1. College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310024, China

2. School of Automation, Chongqing University, Chongqing 400044, China

3. School of Civil Engineering, Chongqing University, Chongqing 400044, China

Abstract

The prefabricated composite slab (PCS) is an essential horizontal component in a building, which is made of a precast part and a cast-in-place concrete layer. In practice, the floor should be split into many small PCSs for the convenience of manufacturing and installation. Currently, the splitting design of PCS mostly relies on sound knowledge and valuable experience of construction. While rule-based parametric design tools using building information modeling (BIM) can facilitate PCS splitting, the generated solution is suboptimal and limited. This paper presents an intelligent BIM-based framework to automatically complete the splitting design of PCSs. A collaborative optimization model is formulated to minimize the composite costs of manufacturing and installation. Individuals with similar area information are grouped into a subpopulation, and the optimization objective is to minimize the specifications and quantities of PCSs. Through the correlation information within the subpopulation and the shared information among each other, the variable correlation is eliminated to accomplish the task of collaborative optimization. The multipopulation coevolution particle swarm optimization (PSO) algorithm is implemented for the collaborative optimization model to determine the sizes and positions of all PCSs. The proposed framework is applied in the optimized splitting design of PCSs in a standard floor to demonstrate its practicability and efficiency.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3