The Importance of Root Interactions in Field Bean/Triticale Intercrops

Author:

Esnarriaga Dayana N.,Mariotti MarcoORCID,Cardelli Roberto,Arduini IdunaORCID

Abstract

To highlight the contribution of belowground interactions to biomass and N and P yields, field bean and triticale were grown in a P-poor soil as sole crops and as replacement intercrops at two N levels. The shoots were always in contact, while the roots of adjacent rows were free to interact or were completely separated. This allowed simultaneous testing the intraspecific and interspecific competition between rows, which to our knowledge has not been studied before. Root biomass, distribution in soil, morphometry, and functional traits were determined, together with the nodule number and biomass. The Land Equivalent Ratio for shoot biomass and N and P yield were higher than 1 when roots were in contact, and markedly lower when they were separated. This demonstrates the positive contribution of root interactions, which in field bean, consisted of increased root elongation without changes in biomass and nutrient status; in triticale, of increased N and P uptake efficiency and reduced biomass partitioning to roots. The soil-plant processes underlying intercrop advantage led to complementarity in N sources with low N inputs and facilitated N and P uptake with high N inputs, which demonstrates that intercropping could be profitable in both low and high input agriculture.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3