Abstract
AB2O4-type binary-transition metal oxides (BTMOs) of CuCo2O4 and MnCo2O4 were successfully prepared on ordered macroporous electrode plates (OMEP) for supercapacitors. Under the current density of 5 mA cm−2, the CuCo2O4/OMEP electrode achieved a specific capacitance of 1199 F g−1. The asymmetric supercapacitor device prepared using CuCo2O4/OMEP as the positive electrode and carbon-based materials as the negative electrode (CuCo2O4/OMEP//AC) achieved the power density of 14.58 kW kg−1 under the energy density of 11.7 Wh kg−1. After 10,000 GCD cycles, the loss capacitance of CuCo2O4/OMEP//AC is only 7.5% (the retention is 92.5%). The MnCo2O4/OMEP electrode shows the specific and area capacitance of 843 F g−1 and 5.39 F cm−2 at 5 mA cm−2. The MnCo2O4/OMEP-based supercapacitor device (MnCo2O4/OMEP//AC) has a power density of 8.33 kW kg−1 under the energy density of 11.6 Wh kg−1 and the cycle stability was 90.2% after 10,000 cycles. The excellent power density and cycle stability prove that the prepared hybrid supercapacitor fabricated under silicon process has a good prospect as the power buffer device for solar cells.
Funder
Fundamental Research Funds for Central Universities of the Central South University
City University of Hong Kong Strategic Research Grant
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献