Abstract
AbstractMicrodevice integrating energy storage with wireless charging could create opportunities for electronics design, such as moveable charging. Herein, we report seamlessly integrated wireless charging micro-supercapacitors by taking advantage of a designed highly consistent material system that both wireless coils and electrodes are of the graphite paper. The transferring power efficiency of the wireless charging is 52.8%. Benefitting from unique circuit structure, the intact device displays low resistance and excellent voltage tolerability with a capacitance of 454.1 mF cm−2, superior to state-of-the-art conventional planar micro-supercapacitors. Besides, a record high energy density of 463.1 μWh cm−2 exceeds the existing metal ion hybrid micro-supercapacitors and even commercial thin film battery (350 μWh cm−2). After charging for 6 min, the integrated device reaches up to a power output of 45.9 mW, which can drive an electrical toy car immediately. This work brings an insight for contactless micro-electronics and flexible micro-robotics.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Beijing Municipality
the National Key R&D Program of China
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
124 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献