Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage

Author:

Bonaccorso Francesco12,Colombo Luigi3,Yu Guihua4,Stoller Meryl5,Tozzini Valentina6,Ferrari Andrea C.2,Ruoff Rodney S.7,Pellegrini Vittorio16

Affiliation:

1. Istituto Italiano di Tecnologia, Graphene Labs, Via Morego 30, I-16163 Genova, Italy.

2. Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, UK.

3. Texas Instruments, Dallas, TX 75243, USA.

4. Materials Science and Engineering Program and Department of Mechanical Engineering, University of Texas at Austin, Austin, TX 78712–0292, USA.

5. nCarbon, Austin, TX 78727, USA.

6. National Enterprise for nanoScience and nanoTechnology, Istituto Nanoscienze–CNR and Scuola Normale Superiore, I-56126 Pisa, Italy.

7. Center for Multidimensional Carbon Materials, Institute for Basic Science, Department of Chemistry, Ulsan National Institute of Science & Technology, UNIST-gil 50, Eonyang-eup, Ulju-gun, Ulsan 689-798, Republic of Korea.

Abstract

Background The integration of graphene in photovoltaic modules, fuel cells, batteries, supercapacitors, and devices for hydrogen generation offers opportunities to tackle challenges driven by the increasing global energy demand. Graphene’s two-dimensional (2D) nature leads to a theoretical surface-to-mass ratio of ~2600 m 2 /g, which combined with its high electrical conductivity and flexibility, gives it the potential to store electric charge, ions, or hydrogen. Other 2D crystals, such as transition metal chalcogenides (TMDs) and transition metal oxides, are also promising and are now gaining increasing attention for energy applications. The advantage of using such 2D crystals is linked to the possibility of creating and designing layered artificial structures with “on-demand” properties by means of spin-on processes, or layer-by-layer assembly. This approach exploits the availability of materials with metallic, semiconducting, and insulating properties. Advances The success of graphene and related materials (GRMs) for energy applications crucially depends on the development and optimization of production methods. High-volume liquid-phase exfoliation is being developed for a wide variety of layered materials. This technique is being optimized to control the flake size and to increase the edge-to-surface ratio, which is crucial for optimizing electrode performance in fuel cells and batteries. Micro- or nanocrystal or flake edge control can also be achieved through chemical synthesis. This is an ideal route for functionalization, in order to improve storage capacity. Large-area growth via chemical vapor deposition (CVD) has been demonstrated, producing material with high structural and electronic quality for the preparation of transparent conducting electrodes for displays and touch-screens, and is being evaluated for photovoltaic applications. CVD growth of other multicomponent layered materials is less mature and needs further development. Although many transfer techniques have been developed successfully, further improvement of high-volume manufacturing and transfer processes for multilayered heterostructures is needed. In this context, layer-by-layer assembly may enable the realization of devices with on-demand properties for targeted applications, such as photovoltaic devices in which photon absorption in TMDs is combined with charge transport in graphene. Outlook Substantial progress has been made on the preparation of GRMs at the laboratory level. However, cost-effective production of GRMs on an industrial scale is needed to create the future energy value chain. Applications that could benefit the most from GRMs include flexible electronics, batteries with efficient anodes and cathodes, supercapacitors with high energy density, and solar cells. The realization of GRMs with specific transport and insulating properties on demand is an important goal. Additional energy applications of GRMs comprise water splitting and hydrogen production. As an example, the edges of MoS 2 single layers can oxidize fuels—such as hydrogen, methanol, and ethanol—in fuel cells, and GRM membranes can be used in fuel cells to improve proton exchange. Functionalized graphene can be exploited for water splitting and hydrogen production. Flexible and wearable devices and membranes incorporating GRMs can also generate electricity from motion, as well as from water and gas flows. Tailored GRMs for energy applications. The ability to produce GRMs with desired specific properties paves the way to their integration in a variety of energy devices. Solution processing and chemical vapor deposition are the ideal means to produce thin films that can be used as electrodes in energy devices (such as solar panels, batteries, fuel cells, or in hydrogen storage). Chemical synthesis is an attractive route to produce “active” elements in solar cell or thermoelectric devices.

Funder

Welch Foundation

Lancaster University

European Research Council

Engineering and Physical Sciences Research Council

Royal Society Wolfson Research Merit Award

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 3035 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3