Microstructure and Dielectric Properties of PTFE-Based Composites Filled by Micron/Submicron-Blended CCTO

Author:

Xie Chao,Liang Fei,Ma Min,Chen Xizi,Lu Wenzhong,Jia Yunxiang

Abstract

This paper investigated a polymer-based composite by homogeneously embedding calcium copper titanate (CaCu3Ti4O12; CCTO) fillers into a polytetrafluoroethylene matrix. We observed the composite filled by CCTO powder at different sizes. The particle size effects of the CCTO filling, including single-size particle filling and co-blending filling, on the microstructure and dielectric properties of the composite were discussed. The dielectric performance of the composite was investigated within the frequency range of 100 Hz to 1 MHz. Results showed that the composite filled by micron/submicron-blended CCTO particles had the highest dielectric constant (εr = 25.6 at 100 Hz) and almost the same dielectric loss (tanδ = 0.1 at 100 Hz) as the composite filled by submicron CCTO particles at the same volume percentage content. We researched the theoretical reason of the high permittivity and low dielectric loss. We proved that it was effective in improving the dielectric property of the polymer-based composite by co-blending filling in this experiment.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3