Forest Smoke-Fire Net (FSF Net): A Wildfire Smoke Detection Model That Combines MODIS Remote Sensing Images with Regional Dynamic Brightness Temperature Thresholds

Author:

Ding Yunhong12,Wang Mingyang1ORCID,Fu Yujia1,Wang Qian3

Affiliation:

1. College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China

2. School of Computer Science and Information Engineering, Harbin Normal University, Harbin 150025, China

3. Department of Computer Science, Durham University, Durham DH1 3LE, UK

Abstract

Satellite remote sensing plays a significant role in the detection of smoke from forest fires. However, existing methods for detecting smoke from forest fires based on remote sensing images rely solely on the information provided by the images, overlooking the positional information and brightness temperature of the fire spots in forest fires. This oversight significantly increases the probability of misjudging smoke plumes. This paper proposes a smoke detection model, Forest Smoke-Fire Net (FSF Net), which integrates wildfire smoke images with the dynamic brightness temperature information of the region. The MODIS_Smoke_FPT dataset was constructed using a Moderate Resolution Imaging Spectroradiometer (MODIS), the meteorological information at the site of the fire, and elevation data to determine the location of smoke and the brightness temperature threshold for wildfires. Deep learning and machine learning models were trained separately using the image data and fire spot area data provided by the dataset. The performance of the deep learning model was evaluated using metric MAP, while the regression performance of machine learning was assessed with Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). The selected machine learning and deep learning models were organically integrated. The results show that the Mask_RCNN_ResNet50_FPN and XGR models performed best among the deep learning and machine learning models, respectively. Combining the two models achieved good smoke detection results (Precisionsmoke=89.12%). Compared with wildfire smoke detection models that solely use image recognition, the model proposed in this paper demonstrates stronger applicability in improving the precision of smoke detection, thereby providing beneficial support for the timely detection of forest fires and applications of remote sensing.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3