Wildfire-Detection Method Using DenseNet and CycleGAN Data Augmentation-Based Remote Camera Imagery

Author:

Park Minsoo,Tran Dai QuocORCID,Jung Daekyo,Park SeungheeORCID

Abstract

To minimize the damage caused by wildfires, a deep learning-based wildfire-detection technology that extracts features and patterns from surveillance camera images was developed. However, many studies related to wildfire-image classification based on deep learning have highlighted the problem of data imbalance between wildfire-image data and forest-image data. This data imbalance causes model performance degradation. In this study, wildfire images were generated using a cycle-consistent generative adversarial network (CycleGAN) to eliminate data imbalances. In addition, a densely-connected-convolutional-networks-based (DenseNet-based) framework was proposed and its performance was compared with pre-trained models. While training with a train set containing an image generated by a GAN in the proposed DenseNet-based model, the best performance result value was realized among the models with an accuracy of 98.27% and an F1 score of 98.16, obtained using the test dataset. Finally, this trained model was applied to high-quality drone images of wildfires. The experimental results showed that the proposed framework demonstrated high wildfire-detection accuracy.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference52 articles.

1. Mapping forest wildfire risk of the world;Meng,2015

2. Climate-induced variations in global wildfire danger from 1979 to 2013

3. Temperature as a potent driver of regional forest drought stress and tree mortality

4. Climate Stabilization Targets: Emissions, Concentrations, and Impacts over Decades to Millennia;Solomon,2011

5. Forest Fire Detection Using a Rule-Based Image Processing Algorithm and Temporal Variation

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3