Abstract
Anthocyanins are flavonoids with an antioxidant effect. They are the pigments that give rich colours to berries, red onions, pomegranates, and grapes. In addition to acting as antioxidants and fighting free radicals, anthocyanins may offer anti-inflammatory, anti-viral, and anti-cancer benefits. Among various types of fruits, blackberries and grapes are distinguished by their rich content in polyphenols, including anthocyanins. The purpose of this study was the identification and quantification of the anthocyanins in black grape skins and blackberries, but also the determination of the total phenolic content and total antioxidant capacity. The grape skins and blackberry extracts were prepared by an ultrasound-assisted acidified ethanol and methanol extraction method, with the 80% methanol solution being the most effective. Alcoholic extracts of blackberries and grape skins were analysed by the HPLC-DAD-MS method. There were five glycosylated anthocyanin compounds in blackberries, eight glycosylated anthocyanins compounds, and seven fragments of anthocyanin derivatives in grape skins identified. It was concluded that the anthocyanin profile of blackberries and grapes revealed mainly anthocyanin monoglycosides and acetylglycosides. Cyanidin-3-glucoside was the main component (86.49%) in blackberries, while, in the grape skins, the main component was delphinidin-3-O-glucoside (about 40.64%). Principal component analysis (PCA) was carried out on the basis of the 13 identified compounds in order to separate the extracts and describe the anthocyanins characteristics of different groups, the findings being in agreement with the experimental results. Compared to methanol extracts, ethanol extracts showed higher antioxidant activity, being related to the total phenolic content for the blackberries. Overall, the obtained results indicated that the blackberries and grapes skins possessed a high antioxidant content, similar to other berries, highlighting their potential use as fresh functional foods or fruit-derived products.
Funder
Romanian Ministry of Research, Innovation and Digitalization
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献