Quantifying Joule Heating and Mass Transport in Metal Nanowires During Controlled Electromigration

Author:

Yagi Mamiko,Shirakashi Jun-ichi

Abstract

The nanoscale heat dissipation (Joule heating) and mass transport during electromigration (EM) have attracted considerable attention in recent years. Here, the EM-driven movement of voids in gold (Au) nanowires of different shapes (width range: 50–300 nm) was directly observed by performing atomic force microscopy. Using the data, we determined the average mass transport rate to be 105 to 106 atoms/s. We investigated the heat dissipation in L-shaped, straight-shaped, and bowtie-shaped nanowires. The maximum Joule heating power of the straight-shaped nanowires was three times that of the bowtie-shaped nanowires, indicating that EM in the latter can be triggered by lower power. Based on the power dissipated by the nanowires, the local temperature during EM was estimated. Both the local temperature and junction voltage of the bowtie-shaped nanowires increased with the decrease in the Joule heating power and current, while the current density remained in the order of 108 A/cm2. The straight-shaped nanowires exhibited the same tendency. The local temperature at each feedback point could be simply estimated using the diffusive heat transport relationship. These results suggest that the EM-driven mass transport can be controlled at temperatures much lower than the melting point of Au.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3