Review—Recent Material Advances and Their Mechanistic Approaches for Room Temperature Chemiresistive Gas Sensors

Author:

Reddy Bapathi Kumaar SwamyORCID,Borse Pramod H.ORCID

Abstract

Gas sensors have become an integral part of the industrial and domestic sector, due to the increased emissions from industries, automobiles, and thereby exposure of the harmful gases like CO, NO2, SO2, CO2, NH3 etc. Metal oxide-semiconducting (MOS) chemiresistive gas sensors are the most popular commercial gas sensors available in the market. However, they need high operational temperature for activation and deactivation, which is a serious concern for sensitive combustible environments, as well as in other applications where flexibility, low power consumption, and miniaturization are desirable. Hence, gas sensors those exhibit high sensitivity and selectivity to the target gases, at room temperature are the need-of-hour in the market. This review focuses on various strategies and approaches those being employed and the challenges ahead to realize such room temperature chemiresistive gas sensing; viz: (i) 1D-nanostructuring of various conventional metals and metal oxides; (ii) Nano +heterojunctions between metal oxide-metal oxides and noble metals; (iii) 2D-materials; (iv) Self-heating in nanowires; (v) Perovskites; (vi) Conducting polymers; (vii) defect engineering to produce free charge carriers, and (viii) alternative activation by light illumination. The mechanism behind the strategies implemented to achieve such room temperature gas sensing has been explicitly discussed. The review also introduces various types of gas sensors, their working principle, pros and cons, mechanism and parameters of chemiresistive gas sensors, and their typical construction. This article also discusses the electrode configurations used in the chemiresistive gas sensors.

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3