Vibration Suppression Trajectory Planning of Underwater Flexible Manipulators Based on Incremental Kriging-Assisted Optimization Algorithm

Author:

Huang Hui1ORCID,Tang Guoyuan1,Chen Hongxuan1,Wang Jianjun1ORCID,Han Lijun1ORCID,Xie De1

Affiliation:

1. School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract

It is of great significance to expand the functions of submarines by carrying underwater manipulators with a large working space. To suppress the flexible vibration of underwater manipulators, an improved sparrow search algorithm (ISSA) combining an elite strategy and a sine algorithm is proposed for the trajectory planning of underwater flexible manipulators. In this method, the vibration evaluation function is established based on the precise dynamic model of the underwater flexible manipulator and considering complex motion and vibration constraints. Simulation results show that the ISSA algorithm requires only 1/3.68 of the time of PSO. Compared to PSO, SSA and the opposition-based learning sparrow search algorithm (OBLSSA), the optimization performance is improved by 17.3%, 13.1% and 9.7%, respectively. However, because the complex dynamics model of the underwater flexible manipulator leads to large computational effort and a long optimization time, ISSA is difficult to apply directly in practice. To obtain a large number of optimization results in a shorter time, an incremental Kriging-assisted ISSA (IKA-ISSA) is proposed in this paper. Simulation results show that IKA-ISSA has good nonlinear approximation ability and the optimization time is only 3% of that of the ISSA.

Funder

National Natural Science Foundation of China

Wuhan Science and Technology Project

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3