A Numerical Investigation of Supercavitation Vehicle’s Hydrodynamic Noise

Author:

Ye Jiacheng1,Zhang Jing1ORCID,Wang Yuebing1,Zhao Peng1ORCID

Affiliation:

1. Key Laboratory of Acoustics Research, College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, China

Abstract

This paper presents the simulation results of the acoustic field around an underwater supercavitation vehicle under various operating conditions and analyzes the cavitation phenomenon and the hydrodynamic noise spectrum. Regarding the ventilated cavitation phenomenon, the simulation shows that low vehicle speed can reduce the threshold of the ventilated supercavitation, and high background pressure can enhance the stability of the supercavitation structure. As for hydrodynamic noise, firstly, the simulation results reveal that when cavitation occurs, the noise spectrum exhibits several characteristic peaks near 1 kHz and between 3 and 10 kHz. The overall noise amplitude demonstrates a descending trend between 10 and 40 kHz. Further, under natural cavitation conditions, a characteristic peak is detectable between 40 and 80 kHz. The influence of the operating conditions on the noise is essentially achieved by altering the scale of the cavitation flow: with the growth of the bubble flow scale, the noise between 3 and 10 kHz first increases and then decreases due to its own pulsation and the masking effect, while the noise between 10 to 40 kHz substantially reduces. On the other hand, if the scale expansion of bubble flow is related to the increase of ventilation flow, the noise amplitude near 1 kHz will increase significantly. These results provide theoretical support for studying the supercavitation vehicles’ noise and applying the ventilated supercavitation technology.

Funder

National Key R&D Program of China

Zhejiang provincial natural science foundation

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference26 articles.

1. High-speed imaging of supercavitating underwater projectiles;Hrubes;Exp. Fluids,2001

2. Knapp, R., Daily, J., and Hammitt, F. (1970). Cavitation, McGraw-Hill. Eng. Soc. Monographs.

3. Experimental investigation of cavitation noise;Varga;Houille Blanche,1966

4. New method for monitoring and correlating cavitation noise to erosion capability;De;J. Fluids Eng.,1982

5. Experimental study on unsteady characteristics of the transient cavitation flow;Liu;Flow Meas. Instrum.,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3