Direct Numerical Simulation of Bubble Cluster Collapse: Shape Evolution and Energy Transfer Mechanisms

Author:

Ye Jiacheng1,Zhang Jing1ORCID,Huang Tianyang1

Affiliation:

1. Key Laboratory of Acoustics Research, College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, China

Abstract

This study employs the VOF method to conduct the direct numerical simulation of the collapse progress of the near-wall bubble cluster. Factors such as viscosity, compressibility, and surface tension are taken into account, with an emphasis on the flow field energy evolution. Firstly, the collapse of a cubic bubble cluster comprising 64 bubbles is simulated, validating previous research regarding the morphological evolution and energy release mechanisms during cluster collapse. Overall, the cubic bubble cluster collapse exhibits a layer-by-layer phenomenon, where the outer layer bubbles collapse first, converting a portion of bubble potential energy into fluid kinetic energy, which then contributes to the inner layer bubble collapse. The pressure wave energy is primarily released when the whole bubble cluster completely collapses. Secondly, we investigate the collapse process of columnar bubble clusters, which closely resemble realistic cloud cavitation. By comparing the collapse behavior of bubble clusters with different heights, we reveal the non-linear delay effect of the cluster height on the collapse time. Additionally, we consolidate our long-term research on the bubble cluster and conclude that both the scale and shape of the bubble clusters have a limited impact on the conversion rate η of bubble potential energy to pressure wave energy η. For instance, when the stand-off distance η=1.5 and the inter-bubble distance D=2.5, the conversion rate η remains consistently 9–15% for various bubble clusters of different scales and shapes.

Funder

Zhejiang provincial natural science foundation

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3