Affiliation:
1. Nuclear Engineering Department, University of Michigan, Ann Arbor, Mich. 48109
2. Mechanical Engineering and Applied Mechanics Department, University of Michigan, Ann Arbor, Mich. 48109
Abstract
For the purpose of obtaining a correlation between cavitation noise and damage, the source of damage, and its variance with flow parameters, was investigated. The individual cavitation pressure pulses were monitored by measuring the peak pulse amplitudes in a cavitating venturi. A pressure-bar probe and an acquisition system has been designed, constructed and used along with a commercial Kistler 601A probe for this purpose. The acoustic power derived from the pulse height spectra (PHS) was found to vary with the nth power of venturi throat velocity, where 6.8 < n < 10.5. The major component in this variation was the number of bubbles collapsing. This is a key factor in cavitation noise intensity variation, in this and other cavitating geometries. The acoustic power has been found to correlate linearly, with a small threshold, with the cavitation damage rate (MDPR) of 1100-0 aluminum. The feasibility of using cavitation erosion efficiency (ratio between erosion power and acoustic power) in predicting eventual cavitaion erosion rates in various geometries has been investigated.
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献