An Efficient Underwater Navigation Method Using MPC with Unknown Kinematics and Non-Linear Disturbances

Author:

Barreno Pablo1,Parras Juan1ORCID,Zazo Santiago1ORCID

Affiliation:

1. Information Processing and Telecommunications Center, Universidad Politécnica de Madrid, 28040 Madrid, Spain

Abstract

Many Autonomous Underwater Vehicles (AUVs) need to cope with hazardous underwater medium using a limited computational capacity while facing unknown kinematics and disturbances. However, most algorithms proposed for navigation in such conditions fail to fulfil all conditions at the same time. In this work, we propose an optimal control method, based on a receding horizon approach, namely MPC (Model Predictive Control). Our model also estimates the kinematics of the medium and its disturbances, using efficient tools that rely on the use of linear algebra and first-order optimization methods. We also test our ideas using an extensive set of simulations, which show that the proposed ideas are very competitive in terms of cost and computational efficiency in cases of total and partial observability.

Funder

Spanish Ministry of Science and Innovation

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference40 articles.

1. Unmanned aerial vehicles (UAVs): A survey on civil applications and key research challenges;Shakhatreh;IEEE Access,2019

2. Winston, C., and Karpilow, Q. (2020). Autonomous Vehicles: The Road to Economic Growth?, Brookings Institution Press.

3. Advancements in the field of autonomous underwater vehicle;Sahoo;Ocean Eng.,2019

4. AUV navigation and localization: A review;Paull;IEEE J. Ocean. Eng.,2013

5. Navigation technologies for autonomous underwater vehicles;Stutters;IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.),2008

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3