A Velocity-Adaptive MPC-Based Path Tracking Method for Heavy-Duty Forklift AGVs

Author:

Wang Yajun1,Sun Kezheng23,Zhang Wei2,Jin Xiaojun3ORCID

Affiliation:

1. State Energy Group Shendong Coal Group Co., Ltd., Yulin 719315, China

2. College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China

3. Zhongcang Robot (Nanjing) Co., Ltd., Nanjing 211899, China

Abstract

In warehouses with vast quantities of heavy goods, heavy-duty forklift Automated Guided Vehicles (AGVs) play a key role in facilitating efficient warehouse automation. Due to their large load capacity and high inertia, heavy-duty forklift AGVs struggle to automatically navigate optimized routes. Additionally, rapid acceleration and deceleration can pose safety hazards. This paper proposes a velocity-adaptive model predictive control (MPC)-based path tracking method for heavy-duty forklift AGVs. The movement of heavy-duty forklift-type AGVs is categorized into straight-line and curve-turning motions, corresponding to the straight and curved sections of the reference path, respectively. These sections are segmented based on their curvature. The best driving speeds for straight and curved sections were 1.5 m/s and 0.3 m/s, respectively, while the optimal acceleration rates were 0.2 m/s2 for acceleration and −0.2 m/s2 for deceleration in straight paths and 0.3 m/s2 for acceleration with −0.15 m/s2 for deceleration in curves. Moreover, preferred sampling times, prediction domain, and control domain were determined through simulations at various speeds. Four path tracking methods, including pure tracking, Linear Quadratic Regulator (LQR), MPC, and the velocity-adaptive MPC, were simulated and evaluated under straight-line, turning, and complex double lane change conditions. Field experiments conducted in a warehouse environment demonstrated the effectiveness of the proposed path tracking method. Findings have implications for advancing path tracking control in narrow aisles.

Funder

The scientific and technological innovation project form State Energy Group Shendong Coal Group Co., Ltd.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3