TRFM-LS: Transformer-Based Deep Learning Method for Vessel Trajectory Prediction

Author:

Jiang Dapeng12,Shi Guoyou12,Li Na12,Ma Lin12,Li Weifeng12,Shi Jiahui12

Affiliation:

1. Navigation College, Dalian Maritime University, Dalian 116026, China

2. Key Laboratory of Navigation Safety Guarantee of Liaoning Province, Navigation College, Dalian Maritime University, Dalian 116026, China

Abstract

In the context of the rapid development of deep learning theory, predicting future motion states based on time series sequence data of ship trajectories can significantly improve the safety of the traffic environment. Considering the spatiotemporal correlation of AIS data, a trajectory time window panning and smoothing filtering method is proposed for the abnormal values existing in the trajectory data. The application of this method can effectively deal with the jump values and outliers in the trajectory data, make the trajectory smooth and continuous, and ensure the temporal order and integrity of the trajectory data. In this paper, for the features of spatiotemporal data of trajectories, the LSTM structure is integrated on the basis of the deep learning Transformer algorithm framework, abbreviated as TRFM-LS. The LSTM module can learn the temporal features of spatiotemporal data in the process of computing the target sequence, while the self-attention mechanism in Transformer can solve the drawback of applying LSTM to capture the sequence information weakly at a distance. The advantage of complementarity of the fusion model in the training process of trajectory sequences with respect to the long-range dependence of temporal and spatial features is realized. Finally, in the comparative analysis section of the error metrics, by comparing with current state-of-the-art methods, the algorithm in this paper is shown to have higher accuracy in predicting time series trajectory data. The research in this paper provides an early warning information reference for autonomous navigation and autonomous collision avoidance of ships in practice.

Funder

National Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3