Shipboard Data Compression Method for Sustainable Real-Time Maritime Communication in Remote Voyage Monitoring of Autonomous Ships

Author:

Jurdana Irena,Lopac NikolaORCID,Wakabayashi Nobukazu,Liu Hongze

Abstract

Due to the ever-increasing amount of data collected and the requirements for the rapid and reliable exchange of information across many interconnected communication devices, land-based communications networks are experiencing continuous progress and improvement of existing infrastructures. However, maritime communications are still characterized by slow communication speeds and limited communication capacity, despite a similar trend of increasing demand for information exchange. These limitations are particularly evident in digital data exchange, which is still limited to relatively slow and expensive narrowband satellite transmission. Furthermore, with the increasing digitalization of ships and introducing the sustainable concept of autonomous ship operation, large amounts of collected data need to be transmitted in real-time to enable remote voyage monitoring and control, putting additional pressure on the already strained means of maritime communications. In this paper, an adaptive shipboard data compression method based on differential binary encoding is proposed for real-time maritime data transmission. The proposed approach is verified on the actual data collected on board a training ship equipped with the latest data acquisition system. The obtained results show that the proposed data encoding method efficiently reduces the transmitted data size to an average of 3.4% of the original shipboard data, thus significantly reducing the required data transmission rate. Moreover, the proposed method outperforms several other tested competing methods for shipboard data encoding by up to 69.6% in terms of compression efficiency. Therefore, this study suggests that the proposed data compression approach can be a viable and efficient solution for transmitting large amounts of digital shipboard data in sustainable maritime real-time communications.

Funder

European Regional Development Fund

University of Rijeka, Faculty of Maritime Studies

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3