Comparative Study of ZnO Thin Films Grown on Quartz Glass and Sapphire (001) Substrates by Means of Magnetron Sputtering and High-Temperature Annealing

Author:

Yang Weijia,Wang Fengming,Guan Zeyi,He Pengyu,Liu Zhihao,Hu Linshun,Chen Mei,Zhang Chi,He XinORCID,Fu Yuechun

Abstract

In this work, we reported a comparative study of ZnO thin films grown on quartz glass and sapphire (001) substrates through magnetron sputtering and high-temperature annealing. Firstly, the ZnO thin films were deposited on the quartz glass and sapphire (001) substrates in the same conditions by magnetron sputtering. Afterwards, the sputtered ZnO thin films underwent an annealing process at 600 °C for 1 h in an air atmosphere to improve the quality of the films. X-ray diffraction, scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy (XPS), ultraviolet-visible spectra, photoluminescence spectra, and Raman spectra were used to investigate the structural, morphological, electrical, and optical properties of the both as-received ZnO thin films. The ZnO thin films grown on the quartz glass substrates possess a full width of half maximum value of 0.271° for the (002) plane, a surface root mean square value of 0.50 nm and O vacancies/defects of 4.40% in the total XPS O 1s peak. The comparative investigation reveals that the whole properties of the ZnO thin films grown on the quartz glass substrates are comparable to those grown on the sapphire (001) substrates. Consequently, ZnO thin films with high quality grown on the quartz glass substrates can be achieved by means of magnetron sputtering and high-temperature annealing at 600 °C.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3