Abstract
The microstructure, martensitic transformations and crystal structure defects in the Ti50Ni47.3Fe2.7 (at%) alloy after equal-channel angular pressing (ECAP, angle 90°, route BC, 1–3 passes at T = 723 K) have been investigated. A homogeneous submicrocrystalline (SMC) structure (grains/subgrains about 300 nm) is observed after 3 ECAP passes. Crystal structure defects in the Ti49.4Ni50.6 (at%) alloy (8 ECAP passes, angle 120°, BC route, T = 723 K, grains/subgrains about 300 nm) and Ti50Ni47.3Fe2.7 (at%) alloy with SMC B2 structures after ECAP were studied by positron lifetime spectroscopy at the room temperature. The single component with the positron lifetime τ1 = 132 ps and τ1 = 140 ps were observed for positron lifetime spectra (PLS) obtained from ternary and binary, correspondingly, annealed alloys with coarse-grained structures. This τ1 values correspond to the lifetime of delocalized positrons in defect-free B2 phase. The two component PLS were found for all samples exposed by ECAP. The component with τ2 = 160 ps (annihilation of positrons trapped by dislocations) is observed for all samples after 1–8 ECAP passes. The component with τ3 = 305 ps (annihilation of positrons trapped by vacancy nanoclusters) was detected only after the first ECAP pass. The component with τ3 = 200 ps (annihilation of positrons trapped by vacancies in the Ti sublattice of B2 structure) is observed for all samples after 3–8 ECAP passes.
Subject
General Materials Science,Metals and Alloys
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献