Effect of Deformation on Precipitation and the Microstructure Evolution during Multistep Thermomechanical Processing of Al-Zn-Mg-Cu Alloy

Author:

Zuo JinrongORCID,Hou Longgang,Shu XuedaoORCID,Peng Wenfei,Yin Anmin,Zhang Jishan

Abstract

In order to obtain fine grained structure efficiently, a new multi-step rolling process (MSR: pre-deformation + intermediate annealing + hot deformation) was applied in Al-Zn-Mg-Cu plates. Conventional hot rolling (CHR) was also carried out as a contrast experiment. The evolution of microstructures and improvement of mechanical properties were analyzed by optical microscope, scanning electron microscope, transmission electron microscope, X-ray diffractometer, and tensile tests. The results show that the MSR process can obtain finer longitudinal grain size and better mechanical properties than CHR, which can be explained as follows: spheroidization of precipitates wrapped by high density dislocations could be promoted by increased pre-deformation; numerous ordered substructures were formed during short-period intermediate annealing at high temperature; in the subsequent hot rolling process, the retained spherical precipitates pinned dislocations and boundaries. With the increase of accumulated strain, low angle grain boundaries gradually transformed into high angle grain boundaries, leading to grain refinement. With the increased pre-deformation (MSR1 20 + 60%, MSR2 40 + 40%, MSR3 60 + 20%), the effect of grain refinement and plasticity improvement gradually weakened. The optimum thermomechanical process (MSR1 solid solution + pre-deformation (300 °C/20%) + intermediate annealing (430 °C/5 min) + hot deformation (400 °C/60%)) was obtained, which can increase elongation by ~25% compared with the CHR process, while maintaining similar high strength for reduced longitudinal grain size.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3