Crystal Structure Defects in Titanium Nickelide after Abc Pressing at Lowered Temperature

Author:

Lotkov AleksandrORCID,Grishkov Victor,Laptev RomanORCID,Mironov YuriORCID,Zhapova Dorzhima,Girsova Natalia,Gusarenko AngelinaORCID,Barmina Elena,Kashina Olga

Abstract

The experimental results regarding the effect of warm (573 K) abc pressing with an increase in the specified true strain, e, up to 9.55, on the microstructure and crystal structure defects (dislocations, vacancies) of the Ti49.8Ni50.2 (at %) alloy are presented. It is shown that all samples (regardless of e) have a two-level microstructure. The grains–subgrains of the submicrocrystalline scale level are in the volumes of large grains. The average sizes of both large grains and subgrain grains decrease with increasing e to 9.55 (from 27 to 12 µm and from 0.36 to 0.13 µm, respectively). All samples had a two-phase state (rhombohedral R and monoclinic B19′ martensitic phases) at 295 K. The full-profile analysis of X-ray reflections of the B2 phase obtained at 393 K shows that the dislocation density increases from 1014 m−2 to 1015 m−2 after pressing with e = 1.84 and reaches 2·1015 m−2 when e increases to 9.55. It has been established by positron annihilation lifetime spectroscopy that dislocations are the main type of defects in initial samples and the only type of defects in samples after abc pressing. The lifetime of positrons trapped by dislocations is 166 ps, and the intensity of this component increases from 83% in the initial samples to 99.4% after pressing with e = 9.55. The initial samples contain a component with a positron lifetime of 192 ps (intensity 16.4%), which corresponds to the presence of monovacancies in the nickel sublattice of the B2 phase (concentration ≈10−5). This component is absent in the positron lifetime spectra in the samples after pressing. The results of the analysis of the Doppler broadening spectroscopy correlate with the data obtained by the positron annihilation lifetime spectroscopy.

Funder

Government research assignment for ISPMS SB RAS

Publisher

MDPI AG

Subject

General Materials Science

Reference74 articles.

1. Bulk Nanostructured Materials

2. Fundamentals and Engineering of Severe Plastic Deformation;Segal,2010

3. A review of shape memory alloy research, applications and opportunities

4. Mechanisms of microstructure evolution in TiNi-based alloys under warm deformation and its effect on martensite transformations;Lotkov,2015

5. Structural and functional properties of a semi equiatomic NiTi shape memory alloy processed by multi-axial forging

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3