Forest Damage Assessment Using Deep Learning on High Resolution Remote Sensing Data

Author:

Hamdi Zayd MahmoudORCID,Brandmeier Melanie,Straub Christoph

Abstract

Storms can cause significant damage to forest areas, affecting biodiversity and infrastructure and leading to economic loss. Thus, rapid detection and mapping of windthrows are crucially important for forest management. Recent advances in computer vision have led to highly-accurate image classification algorithms such as Convolutional Neural Network (CNN) architectures. In this study, we tested and implemented an algorithm based on CNNs in an ArcGIS environment for automatic detection and mapping of damaged areas. The algorithm was trained and tested on a forest area in Bavaria, Germany. . It is a based on a modified U-Net architecture that was optimized for the pixelwise classification of multispectral aerial remote sensing data. The neural network was trained on labeled damaged areas from after-storm aerial orthophotos of a ca. 109 k m 2 forest area with RGB and NIR bands and 0.2-m spatial resolution. Around 10 7 pixels of labeled data were used in the process. Once the network is trained, predictions on further datasets can be computed within seconds, depending on the size of the input raster and the computational power used. The overall accuracy on our test dataset was 92 % . During visual validation, labeling errors were found in the reference data that somewhat biased the results because the algorithm in some instance performed better than the human labeling procedure, while missing areas affected by shadows. Our results are very good in terms of precision, and the methods introduced in this paper have several additional advantages compared to traditional methods: CNNs automatically detect high- and low-level features in the data, leading to high classification accuracies, while only one after-storm image is needed in comparison to two images for approaches based on change detection. Furthermore, flight parameters do not affect the results in the same way as for approaches that require DSMs and DTMs as the classification is only based on the image data themselves, and errors occurring in the computation of DSMs and DTMs do not affect the results with respect to the z component. The integration into the ArcGIS Platform allows a streamlined workflow for forest management, as the results can be accessed by mobile devices in the field to allow for high-accuracy ground-truthing and additional mapping that can be synchronized back into the database. Our results and the provided automatic workflow highlight the potential of deep learning on high-resolution imagery and GIS for fast and efficient post-disaster damage assessment as a first step of disaster management.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference38 articles.

1. Destructive storms in European forests: past and forthcoming impacts;Gardiner,2010

2. Waldschutzsituation 2017 in Bayern;Triebenbacher;AFZ-DerWald,2018

3. Forest disturbances under climate change

4. Sturmschäden in Schwaben von 1950 bis 1980;Böhm;Allg. Forstz.,1981

5. Early Stage Forest Windthrow Estimation Based on Unmanned Aircraft System Imagery

Cited by 102 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3