Att-Mask R-CNN: an individual tree crown instance segmentation method based on fused attention mechanism

Author:

Chen Wenjing1ORCID,Guan Zhihao2,Gao Demin1

Affiliation:

1. College of Information Science and Technology & Artificial Intelligence, Nanjing Forestry University, Nanjing 210037, People's Republic of China

2. School of Computer Science and Engineering, Nanjing University of Science and Technology School, Nanjing 210037, People's Republic of China

Abstract

Tree detection and canopy area measurement are important and difficult tasks in forest inventory, which are important for understanding forest stand structure. This study utilized remotely piloted aircraft (RPA) aerial photography technology to collect remote sensing images of forests in Xiong County, China, creating a dataset comprising 1200 images of six tree species. Based on this dataset, the paper proposes an optimized model, Att-Mask R-CNN, for canopy detection and segmentation. Att-Mask R-CNN outperforms the original models (Mask R-CNN and MS R-CNN) by achieving 65.29% mean average precision for detection, 80.44% mean intersection over union for segmentation, and 90.67% overall recognition rate for the six tree species. In addition, a pixel statistics method based on segmentation masks is introduced for estimating the vertical projected area of individual tree crowns, and comparisons between the measured and predicted vertical projected area of the crowns of six tree species (100 trees of each class) show an overall goodness-of-fit R2 of 85% and a relative root-mean-square error rRMSE of 12.81%. By using remote sensing images from RPAs and optimizing existing deep learning models, the detection and segmentation of individual tree canopies can be achieved, resulting in a more accurate understanding of forest structure, which provides scientific support for forest management and resource monitoring.

Funder

Future Network Scientific Research Fund Project

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Publisher

Canadian Science Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3