Advanced Biofuel Value Chains through System Dynamics Modelling and Competitive Priorities

Author:

Christensen ThomasORCID,Panoutsou CalliopeORCID

Abstract

The greatest challenge in accelerating the realisation of a sustainable and competitive bioeconomy is to demonstrate that enshrining sustainability principles at the very heart of a production line can generate value and improve its overall system. Strategies for reducing emissions, pollutants, indirect land use change or soil depreciation are all perceived as costs or necessary inconveniences to comply with stringent, climate change-focused policy frameworks. System dynamics modelling and competitive priorities are tools that can accurately and intelligently expand on the cross-value chain approach, which integrates both technical and environmental performances, to address the issue of harmonising sustainability and technical operations as one overall dimension of performance. A stock-and-flow model is developed to map a full biofuel value chain and quantitatively and coherently integrate factors of emissions, carbon, land, production, and technology. As such, environmental and operational impacts of innovative practices are measured, and subsequently linked to a qualitative framework of competitive priorities, as defined by transparency, quality, innovation and flexibility. Sustainability and productivity functions are found to reinforce each other when all competitive priorities are optimised. Equally, the framework provides a clear understanding of trade-offs engendered by value chain interventions. Advantages and limitations in the accessibility, scope and transferability of the multi-pronged analytical approach are discussed.

Funder

European Commission

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3