Modeling and Simulation of Crude Oil Sea–River Transshipment System in China’s Yangtze River Basin

Author:

Yang Yan12ORCID,Zhou Qiang1

Affiliation:

1. School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430070, China

2. School of Economics and Management, Changzhou Institute of Technology, Changzhou 213032, China

Abstract

China’s Yangtze River Basin has an increasingly strong demand for crude oil. As a seaborne import port for crude oil, Ningbo-Zhoushan Port is under pressure to undertake the transshipment of crude oil to various oil terminals in the Yangtze River Basin. To alleviate the stress of crude oil transportation in Ningbo-Zhoushan Port, the port operator proposed the crude oil sea–river transshipment scheme in Nantong Port. Therefore, this paper aims to verify the feasibility of this scheme. We used the discrete event system modeling and entity relationship diagram method to construct the hierarchical and concept models of the Yangtze River Basin’s crude oil sea–river transportation system. Furthermore, we developed corresponding simulation modules on the Witness platform and carried out a simulation experiment of the crude oil sea–river transfer scheme. In the experiment, we analyzed the influence of the transshipment ratio on berth utilization, waiting time, and sailing time of other ports by adjusting the parameter of the transshipment ratio. The experimental results show that when the transshipment rate reaches 100%, the utilization rates of loading and unloading berth in Nantong Port are 4% and 13%, respectively, which evidences that Nantong Port has transshipment potential. At the same time, the simulation experiment’s statistical indicators, such as the utilization rate of oil berths, the queuing time of oil tankers, and the sailing time, not only confirm the feasibility of the crude oil sea–river transshipment scheme of Nantong Port but also confirm that the scheme is helpful to improve crude oil transportation efficiency. The simulation results benefit the port operation decision, and the established model and simulation module can be encapsulated and reused.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3