Mid-Infrared Response from Cr/n-Si Schottky Junction with an Ultra-Thin Cr Metal

Author:

Su Zih-Chun,Li Yu-Hao,Lin Ching-FuhORCID

Abstract

Infrared detection technology has been widely applied in many areas. Unlike internal photoemission and the photoelectric mechanism, which are limited by the interface barrier height and material bandgap, the research of the hot carrier effect from nanometer thickness of metal could surpass the capability of silicon-based Schottky devices to detect mid-infrared and even far-infrared. In this work, we investigate the effects of physical characteristics of Cr nanometal surfaces and metal/silicon interfaces on hot carrier optical detection. Based on the results of scanning electron microscopy, atomic force microscopy, and X-ray diffraction analysis, the hot carrier effect and the variation of optical response intensity are found to depend highly on the physical properties of metal surfaces, such as surface coverage, metal thickness, and internal stress. Since the contact layer formed by Cr and Si is the main role of infrared light detection in the experiment, the higher the metal coverage, the higher the optical response. Additionally, a thicker metal surface makes the hot carriers take a longer time to convert into current signals after generation, leading to signal degradation due to the short lifetime of the hot carriers. Furthermore, the film with the best hot carrier effect induced in the Cr/Si structure is able to detect an infrared signal up to 4.2 μm. Additionally, it has a 229 times improvement in the signal-to-noise ratio (SNR) for a single band compared with ones with less favorable conditions.

Funder

Center for electronics technology integration from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education

Ministry of Science and Technology

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3